Zeta Functions for Elements of Entropy Rank One Actions

نویسنده

  • RICHARD MILES
چکیده

An algebraic Z-action of entropy rank one is one for which each element has finite entropy. Using the structure theory of these actions due to Einsiedler and Lind, this paper investigates dynamical zeta functions for elements of the action. An explicit periodic point formula is obtained leading to a uniform parameterization of the zeta functions that arise in expansive components of an expansive action, together with necessary and sufficient conditions for rationality in a more general setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Point Data Detects Subdynamics in Entropy Rank One

A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...

متن کامل

Fe b 20 06 PERIODIC POINT DATA DETECTS SUBDYNAMICS IN ENTROPY RANK ONE

A framework for understanding the geometry of continuous actions of Z was developed by Boyle and Lind using the notion of expansive behavior along lower-dimensional subspaces. For algebraic Z-actions of entropy rank one, the expansive subdynamics is readily described in terms of Lyapunov exponents. Here we show that periodic point counts for elements of an entropy rank one action determine the ...

متن کامل

ALGEBRAIC Zd-ACTIONS OF ENTROPY RANK ONE

We investigate algebraic Z-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of ...

متن کامل

Algebraic Z-actions of Entropy Rank One

We investigate algebraic Zd-actions of entropy rank one, namely those for which each element has finite entropy. Such actions can be completely described in terms of diagonal actions on products of local fields using standard adelic machinery. This leads to numerous alternative characterizations of entropy rank one, both geometric and algebraic. We then compute the measure entropy of a class of...

متن کامل

Crossing the Entropy Barrier of Dynamical Zeta Functions

Dynamical zeta functions are an important tool to quantize chaotic dynamical systems. The basic quantization rules require the computation of the zeta functions on the real energy axis, where their Euler product representations running over the classical periodic orbits usually do not converge due to the existence of the so–called entropy barrier determined by the topological entropy of the cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006